jueves, 25 de octubre de 2012

EL TORNO

TORNO

Se denomina torno (del latín tornus, y este del griego τόρνος, giro, vuelta) a un conjunto de máquinas y herramientas que permiten mecanizar piezas de forma geométrica de revolución. Estas máquinas-herramienta operan haciendo girar la pieza a mecanizar (sujeta en el cabezal o fijada entre los puntos de centraje) mientras una o varias herramientas de corte son empujadas en un movimiento regulado de avance contra la superficie de la pieza, cortando la viruta de acuerdo con las condiciones tecnológicas de mecanizado adecuadas. Desde el inicio de la Revolución industrial, el torno se ha convertido en una máquina básica en el proceso industrial de mecanizado.
La herramienta de corte va montada sobre un carro que se desplaza sobre unas guías o rieles paralelos al eje de giro de la pieza que se tornea, llamado eje Z; sobre este carro hay otro que se mueve según el eje X, en dirección radial a la pieza que se tornea, y puede haber un tercer carro llamado charriot que se puede inclinar, para hacer conos, y donde se apoya la torreta portaherramientas. Cuando el carro principal desplaza la herramienta a lo largo del eje de rotación, produce el cilindrado de la pieza, y cuando el carro transversal se desplaza de forma perpendicular al eje de simetría de la pieza se realiza la operación denominada refrentado.
Los tornos copiadores, automáticos y de control numérico llevan sistemas que permiten trabajar a los dos carros de forma simultánea, consiguiendo cilindrados cónicos y esféricos. Los tornos paralelos llevan montado un tercer carro, de accionamiento manual y giratorio, llamado charriot, montado sobre el carro transversal. Con el charriot inclinado a los grados necesarios es posible mecanizar conos. Encima del charriot va fijada la torreta portaherramientas-
TIPOS DE TORNO
Actualmente se utilizan en la industria del mecanizado varios tipos de tornos, cuya aplicación depende de la cantidad de piezas a mecanizar por serie, de la complejidad de las piezas y de la envergadura de las piezas:
Torno paralelo
El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquinas herramientas más importante que han existido. Sin embargo, en la actualidad este tipo de torno está quedando relegado a realizar tareas poco importantes, a utilizarse en los talleres de aprendices y en los talleres de mantenimiento para realizar trabajos puntuales o especiales.
Para la fabricación en serie y de precisión han sido sustituidos por tornos copiadores, revólver, automáticos y de CNC. Para manejar bien estos tornos se requiere la pericia de profesionales muy bien calificados, ya que el manejo manual de sus carros puede ocasionar errores a menudo en la geometría de las piezas torneadas
Torno copiador
Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico y electrónico permite el torneado de piezas de acuerdo a las características de la misma siguiendo el perfil de una plantilla que reproduce una réplica igual a la guía.
Este tipo de tornos se utiliza para el torneado de aquellas piezas que tienen diferentes escalones de diámetros, que han sido previamente forjadas o fundidas y que tienen poco material excedente. También son muy utilizados estos tornos en el trabajo de la madera y del mármol artístico para dar forma a las columnas embellecedoras. La preparación para el mecanizado en un torno copiador es muy sencilla y rápida y por eso estas máquinas son muy útiles para mecanizar lotes o series de piezas que no sean muy grandes.
Las condiciones tecnológicas del mecanizado son comunes a las de los demás tornos, solamente hay que prever una herramienta que permita bien la evacuación de la viruta y un sistema de lubricación y refrigeración eficaz del filo de corte de las herramientas mediante abundante aceite de corte o taladrina.
Torno revólver
El torno revólver es una variedad de torno diseñado para mecanizar piezas sobre las que sea posible el trabajo simultáneo de varias herramientas con el fin de disminuir el tiempo total de mecanizado. Las piezas que presentan esa condición son aquellas que, partiendo de barras, tienen una forma final de casquillo o similar. Una vez que la barra queda bien sujeta mediante pinzas o con un plato de garras, se va taladrando, mandrinando, roscando o escariando la parte interior mecanizada y a la vez se puede ir cilindrando, refrentando, ranurando, roscando y cortando con herramientas de torneado exterior.
El torno revólver lleva un carro con una torreta giratoria en la que se insertan las diferentes herramientas que realizan el mecanizado de la pieza. También se pueden mecanizar piezas de forma individual, fijándolas a un plato de garras de accionamiento hidráulico.
Torno automático
Se llama torno automático a un tipo de torno cuyo proceso de trabajo está enteramente automatizado. La alimentación de la barra necesaria para cada pieza se hace también de forma automática, a partir de una barra larga que se inserta por un tubo que tiene el cabezal y se sujeta mediante pinzas de apriete hidráulico.
Estos tornos pueden ser de un solo husillo o de varios husillos:
Los de un solo husillo se emplean básicamente para el mecanizado de piezas pequeñas que requieran grandes series de producción.
Cuando se trata de mecanizar piezas de dimensiones mayores se utilizan los tornos automáticos multihusillos donde de forma programada en cada husillo se va realizando una parte del mecanizado de la pieza. Como los husillos van cambiando de posición, el mecanizado final de la pieza resulta muy rápido porque todos los husillos mecanizan la misma pieza de forma simultánea.
La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan principalmente para grandes series de producción. El movimiento de todas las herramientas está automatizado por un sistema de excéntricas y reguladores electrónicos que regulan el ciclo y los topes de final de carrera.
Un tipo de torno automático es el conocido como "tipo suizo", capaz de mecanizar piezas muy pequeñas con tolerancias muy estrechas.
Torno vertical.
El torno vertical es una variedad de torno, de eje vertical, diseñado para mecanizar piezas de gran tamaño, que van sujetas al plato de garras u otros operadores y que por sus dimensiones o peso harían difícil su fijación en un torno horizontal.
Los tornos verticales no tienen contrapunto sino que el único punto de sujeción de las piezas es el plato horizontal sobre el cual van apoyadas. La manipulación de las piezas para fijarlas en el plato se hace mediante grúas de puente o polipastos.
Torno CNC: 
El torno CNC es un torno dirigido por control numérico por computadora.
Ofrece una gran capacidad de producción y precisión en el mecanizado por su estructura funcional y porque la trayectoria de la herramienta de torneado es controlada por un ordenador que lleva incorporado, el cual procesa las órdenes de ejecución contenidas en un software que previamente ha confeccionado un programador conocedor de la tecnología de mecanizado en torno. Es una máquina que resulta rentable para el mecanizado de grandes series de piezas sencillas, sobre todo piezas de revolución, y permite mecanizar con precisión superficies curvas coordinando los movimientos axial y radial para el avance de la herramienta.
CARACTERÍSTICAS DEL TORNO
El torno es una máquina herramienta  en la cual la pieza de se va  a mecanizar  tiene un movimiento de rotación  alrededor del eje, así pues  el torno verifica el movimiento de corte y la pieza el avance.
Todos los tornos  desprenden viruta  de las piezas que giran sobre su eje de rotación, porque lo que su trabajo se distinguirá  por lo que la superficie generada será circular, teniendo como centro su eje de rotación, en el torno de manera  regular se pueden realizar trabajos de desbastado o acabados de las siguientes superficies
·         Cilíndricas  interiores, exteriores.
·         Cónicas  interiores, exteriores.
·         Curvas o semiesféricas.
·         Irregulares pero de acuerdo a un centro de rotación.
Se pueden realizar trabajos especiales como
·         Tallado de roscas
·         Realización de barrenos
·         Realización de escariado
·         Moletiado de superficies
·         Corte o tronzado.
Todos los tornos  comparten las siguientes ventajas errores de los operarios
·         Permiten  obtener mayor precisión en el mecanizado
·         Permiten mecanizar piezas más complejas
·         Se puede cambiar  fácilmente  de mecanizar una pieza  a otra
·         Se reducen los errores de los operarios
·         Cada vez son mas baratos los tornos CNC
Desventajas del torno
·         Coste elevado de herramientas y accesorios
·         Conveniencia de tener una gran ocupación para la maquina debido a su alto costo.

ESTRUCTURA DEL TORNO
El torno tiene cinco componentes principales:
§  Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal.
§  Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de unidad de avance y el selector de sentido de avance. Además sirve para soporte y rotación de la pieza de trabajo que se apoya en el husillo.
§  Contrapunto: el contrapunto es el elemento que se utiliza para servir de apoyo y poder colocar las piezas que son torneadas entre puntos, así como otros elementos tales como portabrocas o brocas para hacer taladros en el centro de los ejes. Este contrapunto puede moverse y fijarse en diversas posiciones a lo largo de la bancada.
§  Carro portátil: consta del carro principal, que produce los movimientos de la herramienta en dirección axial; y del carro transversal, que se desliza transversalmente sobre el carro principal en dirección radial. En los tornos paralelos hay además un carro superior orientable, formado a su vez por tres piezas: la base, el charriot y la torreta portaherramientas. Su base está apoyada sobre una plataforma giratoria para orientarlo en cualquier dirección.
§  Cabezal giratorio o chuck: su función consiste en sujetar la pieza a mecanizar. Hay varios tipos, como el chuck independiente de cuatro mordazas o el universal, mayoritariamente empleado en el taller mecánico, al igual que hay chucks magnéticos y de seis mordazas.

EQUIPO AUXILIAR
Se requieren ciertos accesorios, como sujetadores para la pieza de trabajo, soportes y portaherramientas. Algunos accesorios comunes incluyen:
§  Plato de sujeción de garras universal: sujeta la pieza de trabajo en el cabezal y transmite el movimiento.
§  Plato de sujeción de garras blandas: sujeta la pieza de trabajo en el cabezal a través de una superficie ya acabada. Son mecanizadas para un diámetro específico no siendo válidas para otros.
§  Centros o puntos: soportan la pieza de trabajo en el cabezal y en la contrapunta.
§  Perno de arrastre: Se fija en el plato de torno y en la pieza de trabajo y le transmite el movimiento a la pieza cuando está montada entre centros.
§  Soporte fijo o luneta fija: soporta el extremo extendido de la pieza de trabajo cuando no puede usarse la contrapunta.
§  Soporte móvil o luneta móvil: se monta en el carro y permite soportar piezas de trabajo largas cerca del punto de corte.
§  Torreta portaherramientas con alineación múltiple.
§  Plato de arrastre: para amarrar piezas de difícil sujeción.
§  Plato de garras independientes: tiene 4 garras que actúan de forma independiente unas de otras.

PARAMETROS DE CORTE DEL TORNEADO
Los parámetros de corte fundamentales que hay que considerar en el proceso de torneado son los siguientes:
§  Elección del tipo de herramienta más adecuado
§  Sistema de fijación de la pieza
§  Velocidad de corte (Vc) expresada en metros/minuto
§  Diámetro exterior del torneado
§  Revoluciones por minuto (rpm) del cabezal del torno
§  Avance en mm/rev, de la herramienta
§  Avance en mm/mi de la herramienta
§  Profundidad de pasada
§  Esfuerzos de corte
§  Tipo de torno y accesorios adecuados

Velocidad de corte

Se define como velocidad de corte la velocidad  lineal de la periferia de la pieza que está en contacto con la herramienta. La velocidad de corte, que se expresa en metros por minuto (m/min), tiene que ser elegida antes de iniciar el mecanizado y su valor adecuado depende de muchos factores, especialmente de la calidad y tipo de herramienta que se utilice, de la profundidad de pasada, de la dureza y la maquinabilidad que tenga el material que se mecanice y de la velocidad de avance empleada. Las limitaciones principales de la máquina son su gama de velocidades, la potencia de los motores y de la rigidez de la fijación de la pieza y de la herramienta.

A partir de la determinación de la velocidad de corte se puede determinar las revoluciones por minuto que tendrá el cabezal del torno

La velocidad de corte es el factor principal que determina la duración de la herramienta. Una alta velocidad de corte permite realizar el mecanizado en menos tiempo pero acelera el desgaste de la herramienta. Los fabricantes de herramientas y prontuarios de mecanizado, ofrecen datos orientativos sobre la velocidad de corte adecuada de las herramientas para una duración determinada de la herramienta, por ejemplo, 15 minutos. En ocasiones, es deseable ajustar la velocidad de corte para una duración diferente de la herramienta, para lo cual, los valores de la velocidad de corte se multiplican por un factor de corrección. La relación entre este factor de corrección y la duración de la herramienta en operación de corte no es lineal.
La velocidad de corte excesiva puede dar lugar a:
§  Desgaste muy rápido del filo de corte de la herramienta.
§  Deformación plástica del filo de corte con pérdida de tolerancia del mecanizado.
§  Calidad del mecanizado deficiente; acabado superficial ineficiente.
La velocidad de corte demasiado baja puede dar lugar a:
§  Formación de filo de aportación en la herramienta.
§  Efecto negativo sobre la evacuación de viruta.
§  Baja productividad.
§  Coste elevado del mecanizado.

Velocidad de rotación de la pieza

La velocidad de rotación del cabezal del torno se expresa habitualmente en revoluciones por minuto (rpm). En los tornos convencionales hay una gama limitada de velocidades, que dependen de la velocidad de giro del motor principal y del número de velocidades de la caja de cambios de la máquina. En los tornos de control numérico, esta velocidad es controlada con un sistema de realimentación que habitualmente utiliza un variador de frecuencia y puede seleccionarse una velocidad cualquiera dentro de un rango de velocidades, hasta una velocidad máxima.
La velocidad de rotación de la herramienta es directamente proporcional a la velocidad de corte e inversamente proporcional al diámetro de la pieza.

Velocidad de avance

El avance o velocidad de avance en el torneado es la velocidad relativa entre la pieza y la herramienta, es decir, la velocidad con la que progresa el corte. El avance de la herramienta de corte es un factor muy importante en el proceso de torneado.
Cada herramienta puede cortar adecuadamente en un rango de velocidades de avance por cada revolución de la pieza, denominado avance por revolución (fz). Este rango depende fundamentalmente del diámetro de la pieza, de la profundidad de pasada , y de la calidad de la herramienta . Este rango de velocidades se determina experimentalmente y se encuentra en los catálogos de los fabricantes de herramientas. Además esta velocidad está limitada por las rigideces de las sujeciones de la pieza y de la herramienta y por la potencia del motor de avance de la máquina. El grosor máximo de viruta en mm es el indicador de limitación más importante para una herramienta. El filo de corte de las herramientas se prueba para que tenga un valor determinado entre un mínimo y un máximo de grosor de la viruta.
La velocidad de avance es el producto del avance por revolución por la velocidad de rotación de la pieza.
Al igual que con la velocidad de rotación de la herramienta, en los tornos convencionales la velocidad de avance se selecciona de una gama de velocidades disponibles, mientras que los tornos de control numérico pueden trabajar con cualquier velocidad de avance hasta la máxima velocidad de avance de la máquina.
Efectos de la velocidad de avance
§  Decisiva para la formación de viruta
§  Afecta al consumo de potencia
§  Contribuye a la tensión mecánica y térmica
La elevada velocidad de avance da lugar a:
§  Buen control de viruta
§  Menor tiempo de corte
§  Menor desgaste de la herramienta
§  Riesgo más alto de rotura de la herramienta
§  Elevada rugosidad superficial del mecanizado.
La velocidad de avance baja da lugar a:
§  Viruta más larga
§  Mejora de la calidad del mecanizado
§  Desgaste acelerado de la herramienta
§  Mayor duración del tiempo de mecanizado
§  Mayor coste del mecanizado

 

Tiempo de torneado

Fuerza específica de corte

La fuerza de corte es un parámetro necesario para poder calcular la potencia necesaria para efectuar un determinado mecanizado. Este parámetro está en función del avance de la herramienta, de la profundidad de pasada, de la velocidad de corte, de la maquinabilidad del material, de la dureza del material, de las características de la herramienta y del espesor medio de la viruta. Todos estos factores se engloban en un coeficiente denominado Kx. La fuerza específica de corte se expresa en N/mm2.9

Potencia de corte

La potencia de corte Pc necesaria para efectuar un determinado mecanizado se calcula a partir del valor del volumen de arranque de viruta, la fuerza específica de corte y del rendimiento que tenga la máquina. Se expresa en kilovatios (kW).

Esta fuerza específica de corte Fc, es una constante que se determina por el tipo de material que se está mecanizando, geometría de la herramienta, espesor de viruta, etc.
Para poder obtener el valor de potencia correcto, el valor obtenido tiene que dividirse por un determinado valor (ρ) que tiene en cuenta la eficiencia de la máquina. Este valor es el porcentaje de la potencia del motor que está disponible en la herramienta puesta en el husillo.

 
NORMAS DE SEGURIDAD PARA EL TORNEADO
Cuando se está trabajando en un torno, hay que observar una serie de requisitos para asegurarse de no tener ningún accidente que pudiese ocasionar cualquier pieza que fuese despedida del plato o la viruta si no sale bien cortada. Para ello la mayoría de tornos tienen una pantalla de protección. Pero también de suma importancia es el prevenir ser atrapado(a) por el movimiento rotacional de la máquina, por ejemplo por la ropa o por el cabello largo.
Normas de seguridad
1
Utilizar equipo de seguridad: gafas de seguridad, caretas, etc..
2
No utilizar ropa holgada o muy suelta. Se recomiendan las mangas cortas.
3
Utilizar ropa de algodón.
4
Utilizar calzado de seguridad.
5
Mantener el lugar siempre limpio.
6
Si se mecanizan piezas pesadas utilizar polipastos adecuados para cargar y descargar las piezas de la máquina.
7
Es preferible llevar el pelo corto. Si es largo no debe estar suelto sino recogido.
8
No vestir joyería, como collares, pulseras o anillos.
9
Siempre se deben conocer los controles y funcionamiento del torno. Se debe saber cómo detener su operación.
10
Es muy recomendable trabajar en un área bien iluminada que ayude al operador, pero la iluminación no debe ser excesiva para que no cause demasiado resplandor.


4 comentarios:

  1. Ese tipo de maquinas las usan para la fabricación de muchas piezas entre ellas para la fabricación de moldes de inyección que se usan para la fabricación de otras piezas, saludos

    ResponderEliminar
  2. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  3. Interesante blog sobre torneado recomiendo miren inyección de plástico

    ResponderEliminar